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REFINED GEOMETRICALLY NONLINEAR FORMULATION

OF A THIN-SHELL TRIANGULAR FINITE ELEMENT

UDC 539.3V. V. Kuznetsov and S. V. Levyakov

A refined geometrically nonlinear formulation of a thin-shell finite element based on the Kirchhoff–
Love hypotheses is considered. Strain relations, which adequately describe the deformation of the
element with finite bending of its middle surface, are obtained by integrating the differential equation
of a planar curve. For a triangular element with 15 degrees of freedom, a cost-effective algorithm is
developed for calculating the coefficients of the first and second variations of the strain energy, which
are used to formulate the conditions of equilibrium and stability of the discrete model of the shell.
Accuracy and convergence of the finite-element solutions are studied using test problems of nonlinear
deformation of elastic plates and shells.

Key words: thin shell, nonlinear deformation, finite-element method, invariants, kinematic
group, planar curve.

Introduction. Considerable advances in solving complex problems of nonlinear mechanics of thin-walled
shell structures have been made owing to methods of discrete analysis, among which the finite-element method has
been the most popular one. As applied to analysis of plates and shells, two trends of evolution of this method can
be distinguished: the approach based on the Kirchhoff–Love hypotheses and that based on the Timoshenko and
Reissner–Mindlin theory of plates and shells, which takes into account the transverse shear strains. The dominant
trend in studying finite-element shell models is related to the Reissner–Mindlin model, which relaxes the continuity
condition for the approximating functions. As the shell thickness decreases, however, the solution obtained by
low-order finite elements exhibits a poor convergence rate with respect to the number of finite elements because of
the “locking” effects. Attempts to remove this effect lead to very involved formulations (see, e.g. [1]).

The finite elements based on the Kirchhoff–Love hypotheses are free of “locking” effects, but their construc-
tion requires using high-order approximating polynomials, which leads to an increase in the computational work
and complicates computational algorithms.

It is of interest to consider the question of refining simple finite-element models of a thin shell without
increasing the number of degrees of freedom. The traditional approach to constructing finite elements is to establish
a relation between the displacement fields within an element and nodal parameters using shape functions. In the
process, the strain-tensor components are obtained by differentiating the shape functions. Alternative approaches
such as methods of geometrical and mechanical analogies are seldom used. In the present paper, for solving
geometrically nonlinear problems, an approach of this kind is proposed for constructing a finite element of a thin
shell, which is based on the expression for the strain energy in terms of invariants of the strain-rate tensors and
changes in curvature of the shell middle surface [2], the kinematic group theory [3], and the integration of the
differential equation of a planar curve [4]. The use of these notions allows one to refine the formulation of basic
relations without increasing the number of degrees of freedom and develop a cost-effective algorithm for calculating
the components of the first and second variations of the finite element strain energy, which are required to formulate
the conditions of equilibrium and stability of the discrete model of the shell. A triangular 15 degrees of freedom
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finite element is constructed. A specific feature of the approach proposed is that, for the initial and deformed states,
the shell geometry is determined by the coordinates and direction cosines of the normal vector to the middle surface
at each node of the finite-element model.

1. Strain Energy of the Shell Element. We consider a triangular finite element of a thin isotropic shell.
The strains of the shell are assumed to be small, but no restrictions are imposed on the magnitude of displacements
and rotations. We assume that the middle surface of the element is isometric to a planar triangle with sides lm
(m = 1, 2, 3). As the physical components of the Green strain tensor, we use the normal strains εm of the fibers
directed along the triangle sides. Assuming that the shell obeys the Kirchhoff–Love hypotheses εz

m = εm +zκm and
σz = 0 (z is the normal coordinate to the middle surface, σz is the normal stress, and κm is the change in curvature
of the middle surface in the corresponding direction), we write the strain energy of the shell element as
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Iε and Iεε (Iκ and Iκκ) are the first and second strain (middle-surface curvature change) invariants, respectively,
F is the area of the middle surface of the triangular element, and E, ν, and h are the elastic modulus, Poisson’s
ratio, and shell thickness, respectively; summation is performed over the subscript m = 1, 2, 3.

2. Kinematic Group of The Shell Element. The kinematic group of the triangular shell element [3]
is characterized by the nodal radius vectors ri and adjoined unit vectors ni normal to its middle surface. The
following parameters are used as independent components of the generalized metric tensor of the group:

ei = (rk − rj)2/(2l2i ), ψ1i = ni(rj − ri)/lk, ψ2i = ni(ri − rk)/lj. (2.1)

Here and below, the subscripts i, j, and k take the values 1, 2, and 3 by cyclic permutation, and the lengths
li have the meaning of normalization factors introduced for convenience. Replacing ri and ni by r∗

i and n∗
i ,

respectively, in formulas (2.1), one obtains the components of the generalized metric tensor of the kinematic group
for a deformed state (the superscript asterisk denotes the quantities that refer to a deformed state). In the process,
the normalization factors remain unchanged.

3. Strain Model of the Shell Element. We assume that the strains εi of the middle surface are constant
and determined in terms of the strains of the triangular element sides, while the curvature changes κi can be
expressed in terms of rotations of the normal in the normal plane passing through the corresponding nodes of the
element. We assume that, for the initial and deformed states, the intersection of the middle surface and the normal
plane defines a curve whose shape is close to a circular arc. Moreover, we ignore the deviation of the unit normal
vectors at the nodes from the plane that passes through these nodes [5]. It should be noted that the assumptions
accepted are valid for reasonably small elements but ensure a higher approximation order, as compared to the
asymptotic relations [6].

We write the differential equation of a planar curve (side of the triangular element in the initial state)

n′ = κr′, (3.1)

where r is the radius vector of the curve, n is the normal vector, and κ is the curvature of the curve; the prime
denotes differentiation with respect to the natural coordinate. Integrating Eq. (3.1) from 0 to li for κ = const
between the nodes j and k, we obtain

nk − nj = (ϕi/li)(rk − rj), (3.2)

where κ = ϕi/li and ϕi is the angle between the vectors nj and nk (opening angle). Squaring both sides of
Eq. (3.2), we obtain

2(1 − cosϕi) = (ϕ2
i /l

2
i )(rk − rj)2. (3.3)
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Fig. 1. Finite element of a shell.

Writing Eq. (3.3) for a deformed state and setting l∗2i = (1 + 2εi)l2i by definition of the physical components of the
Green tensor, with allowance for the first relation of (2.1), we obtain the strain

εi = (2e∗iG(ϕ∗
i ) − 1)/2, G(ϕ) = ϕ2/[2(1 − cosϕ)].

Using Eq. (3.2), we obtain expressions for the opening angles

ϕi = θ2k − θ1j , θ1i = ψ1i/(2ek), θ2i = ψ2i/(2ej). (3.4)

Here π/2− θmn is the angle in the normal plane between the normal vector at the nth node and the secant passing
through the nodes (Fig. 1). The rotations of the normal vector in the normal plane due to element deformation are

ϑmn = θ∗mn − θmn.

Since the vectors ri and ni are known for the initial state, the lengths of the triangle sides are determined using
relations (3.3) and (3.4):

l2i = (rk − rj)2G(ϕi), ϕi = arccos{1 − a2
i /[2(rk − rj)2]}, ai = (rk − rj)(nk − nj).

To approximate κi, we use the following law of variation of the curvature of a simply supported beam under
the action of bending moments applied to its ends [4]:

κi = (ϑ2k − ϑ1j)/li + 3(ϑ2k + ϑ1j)(Lk − Lj)/li. (3.5)

Here Lk are the area coordinates [7], the first term valid for all values of ϑmn takes into account the constant
curvature-change component, and the second term (which was ignored in determining εi) describes a small deviation
of the shape of the normal section from the circular arc. It should be noted that the expression for the strain energy
(1.1) allows one to avoid constructing the area coordinates and, hence, reduce the number of arithmetic operations
in calculating the element stiffness matrix.

The relations given above imply that the quantities characterizing the deformed state of the shell element
can be expressed in terms of the metric tensors of the kinematic group (2.1) for the initial and deformed states.
Hence, the variational problem for the finite element reduces to the variational problem for the kinematic group [3].

4. Variations of the Strain Energy. To formulate the conditions of equilibrium and stability and to
construct an iterative solution algorithm, it is necessary to calculate the first and second variations of the strain
energy of the discrete system. For algorithmic computations, we introduce three levels of varied parameters [8]:
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Here x∗mn are the components of the radius vector r∗
n and ωmn are the components of the rotation vector of the

normal vector n∗
n; the subscript in parentheses refers to the level number. At any variation level, the first and

second variations of the strain energy have the form

δΠ = δut
(m)g(m), δ2Π = δut

(m)H(m)δu(m)

(g(m) and H(m) are the gradient and Hess matrix of the mth level). To calculate g = g(3) and H = H(3) (the level
of the generalized coordinates of the kinematic group), we use the recursive relations [8]:

g(m+1) = u′(m)g(m), H(m+1) = u′(m)H(m)u
′ t
(m) + g(m)su

′′
(m)s,

m = 1, 2, s = 1, . . . , 9.
(4.2)

Here g(m)s are the components of the vector g(m), u′(m) and u′′(m)s are the matrices of the first and second partial
derivatives of the mth level variables with respect to the (m + 1)th level variables, respectively; summation is
performed over s. As the strain energy at the first level has the form

Π = ut
(1)Ku(1)/2

(K is the stiffness matrix), the initial values in the recursive formulas (4.2) are given by

g(1) = Ku(1), H(1) = K.

Using relations (1.1), (2.1), and (3.5), we obtain the expression for the element stiffness matrix:
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nonzero components are given for the matrix ρ. Nonzero components of the 3 × 6 matrix C are given by

C11 = (1 + 3(L3 − L2))/l1, C12 = −(1 + 3(L2 − L3))/l1,

C23 = (1 + 3(L1 − L3))/l2, C24 = −(1 + 3(L3 − L1))/l2, (4.4)

C35 = (1 + 3(L2 − L1))/l3, C36 = −(1 + 3(L1 − L2))/l3.

As expressions (4.4) are linear for the area coordinates, the components of the matrix M(L1, L2, L3) are quadratic
functions of the area coordinates. In this case, the integral in (4.3) can be evaluated exactly by the formula [7]∫
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Nonzero components of the matrix u′(1) are given by
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It is worth noting that the expressions for the function G(ϕ) and its derivatives contain uncertainties of the type
(0/0) as ϕ→ 0. For small values of the parameter |ϕ| < 0.1, we use the Taylor series expansions
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The partial derivatives of the second-level variables with respect to the third-level variables (4.1), which
determine the matrices u′(2) and u′′(2)s (s = 1, . . . , 9), are given by
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Here summation is performed over n = 1, 2, 3; λ∗jni are the direction cosines of the vectors t∗1i, t∗2i, and t∗3i = n∗
i at

the ith node, which form a right-handed triad of orthogonal vectors t∗mi = (λ∗m1i, λ
∗
m2i, λ

∗
m3i)

t (i,m = 1, 2, 3).
To calculate shells using the approach considered above, one should specify, as the initial data, the coordinates

xsi and the direction cosines of the normal vectors λ3si at nodes of the finite-element mesh. It should be noted
that the unit vectors t∗1i and t∗2i tangent to the deformed shell middle surface are of auxiliary character and serve to
calculate the variations of the normal vectors according to formulas (4.5). These vectors can easily be constructed
for a given normal vector n∗

i .
5. Solution Algorithm. For a finite-element assemblage, the equations of equilibrium can be written in

the matrix form as

g − λP = 0. (5.1)

Here P is the vector of the generalized external forces with a linear potential and λ is the loading parameter.
Equations (5.1) are solved by the Newton–Raphson method combined with the step-by-step variation in the loading
parameter according to the scheme

H(p) δq(p) + g(p) − λP = 0,
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Fig. 2. Cantilever strip under pure bending.

where the superscript in parentheses enumerates iterations. Stability of equilibrium states determined is investigated
using the Sylvester criterion for the matrix H . During iterations, new values of the nodal unknowns are determined
by the formulas [9]
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s = r∗(p)

s + δr∗(p)
s , n∗(p+1)

s = a1n
∗(p)
s + a2(t

∗(p)
1s δω

(p)
1s + t

∗(p)
2s δω

(p)
2s ),

t∗(p+1)
ms = t∗(p)

ms − δωms[a2n
∗(p)
s + a3(t

∗(p)
1s δω

(p)
1s + t

∗(p)
2s δω

(p)
2s )],

δω(p)
s = (δω(p)2

1m + δω
(p)2
2m )1/2, a1 = cos δω(p)

s , a2 =
sin δω(p)

s

δω
(p)
s

, a3 =
1 − cos δω(p)

s

δω
(p)2
s

.

Formulas for the coefficients a2 and a3 contain uncertainties of the type (0/0) as δω(p)
s → 0. For small values of

δω
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s < 0.1, we use the Taylor series expansion
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720
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6. Numerical Results. Below, some numerical results obtained for five test problems of nonlinear defor-
mation of thin plates and shells are given.

6.1. Pure Bending of a Strip. A cantilever strip of length L of rectangular cross section with dimensions b×h
is loaded by a tip moment M in the plane of minimum stiffness. The following data of [10] are used (dimensions
are not given): L = 12, b = 1, h = 0.1, E = 12 · 105, ν = 0, and Mmax = 50π/3. Owing to symmetry, a half of
the strip is considered using a n1 × n2 uniform finite-element mesh shown in Fig. 2 (n1 and n2 are mesh spacings
along the x1 and x2 axes, respectively). The values of the axial displacement uA and deflection wA of the strip tip
obtained by the finite elements proposed are listed in Table 1. These values are compared with the exact solution

uA = L
(
1 − sinα

α

)
, wA = L

1 − cosα
α

, α =
ML

EI

(I = bh3/12 is the cross-sectional moment of inertia), according to which uA = 12 and wA = 7.639 for M = 0.5Mmax

and uA = 12 and wA = 0 for M = Mmax. In addition, we give the results obtained in [10] for a 1 × 16 mesh of
rectangular four-node elements with six degrees of freedom per node: uA = 12.000 and wA = 7.652 forM = 0.5Mmax

and uA = 12.000 and wA = 0.000 for M = Mmax.
It is worth noting that the large-displacement behavior is well described by the finite element proposed even

for coarse meshes. For example, when the strip is bent into a half ring at M/Mmax = 0.5, the errors in determining
the displacements uA and wA using a 1 × 2 mesh (four elements with a side ratio of 12 : 1) are only 4.6 and 2.1%,
respectively. For coarse meshes, the solution obtained by the finite element of [6] is physically meaningless. One
can see from Table 1 that, for a smaller total number of degrees of freedom, the accuracy provided by the finite
element considered is not poorer, as compared to the other finite-element models.
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TABLE 1

Displacements of the Cantilever Strip under Pure Bending
for Different Numbers of Finite Elements

Mesh

uA wA

Present
solution

Solution [6] Present
solution

Solution [6]

M/Mmax = 0.5

1 × 2 11.445 — 7.802 —
1 × 5 11.998 12.975 7.640 7.019
1 × 10 12.001 12.368 7.639 7.411
1 × 16 12.001 12.273 7.639 7.462
1 × 20 12.001 12.225 7.639 7.494

M/Mmax = 1.0

1 × 5 12.007 — 0.026 —
1 × 10 11.996 10.943 0.000 0.349
1 × 16 11.995 11.462 0.000 0.080
1 × 20 11.995 11.607 0.000 0.041

TABLE 2

Displacements of the Cantilever Strip under Transverse Bending
for Different Numbers of Finite Elements

Mesh

uA wA

Present
solution

Solution [6] Present
solution

Solution [6]

P/Pmax = 0.5

1 × 2 1.493 1.680 4.707 5.168
1 × 5 1.592 1.629 4.906 4.986
1 × 10 1.605 1.640 4.932 4.985
1 × 16 1.607 1.638 4.935 4.980
1 × 20 1.607 1.632 4.936 4.971

P/Pmax = 1

1 × 2 3.106 3.756 6.416 7.286
1 × 5 3.268 3.361 6.665 6.793
1 × 10 3.287 3.341 6.697 6.749
1 × 16 3.290 3.334 6.701 6.738
1 × 20 3.290 3.324 6.701 6.730

6.2. Transverse Bending of a Strip. A cantilever strip of length L and rectangular cross section with
dimensions b × h is loaded by a tip shear force P . The finite-element mesh and the distribution law of the nodal
load are similar to those considered in Sec. 6.1 (see Fig. 2). The following data of [10] are employed (dimensions
of the quantities are not given): L = 10, b = 1, h = 0.1, E = 12 · 105, ν = 0, and Pmax = 4. Table 2 gives the
tip displacements of the strip uA and wA for two values of the load. As the number of finite elements increases,
the solution obtained by the finite-element model proposed rapidly converges to the values calculated using the
extensible plane rod model [4]: uA = 1.606 and wA = 4.935 for P = 0.5Pmax and uA = 3.289 and wA = 6.700 for
P = Pmax. For comparison, we give the results of [10] obtained for a 1× 16 mesh of rectangular four-node elements
with six degrees of freedom per node: uA = 1.604 and wA = 4.933 for P = 0.5Pmax and uA = 3.286 and wA = 6.698
for P = Pmax. It follows from Table 2 that the element proposed here provides reasonable accuracy for a smaller
total number of degrees of freedom.

We note that the displacements calculated by the finite element model of [6] are somewhat overpredicted.
6.3. Buckling of a Plate. We consider the buckling problem for a simply supported square plate with side b

under uniformly distributed uniaxial compressive loads p. This problem is chosen to verify the interaction between
the membrane and bending factors related by nonlinear dependences. The critical load was calculated for the
following parameters: E = 2 · 1011 N/m2, ν = 0, b = 1 m, and h = 0.01 m. Owing to symmetry, a quarter of
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TABLE 3
Parameter of the Critical Load for a Simply Supported Square Plate

for Different Numbers of Finite Elements

Mesh

k

Present
solution

Solution [6]

1 × 1 3.8499 3.4649
2 × 2 3.9758 3.8740
3 × 3 3.9932 3.9436
4 × 4 3.9978 3.9675

the plate was modeled using a uniform finite-element mesh (Fig. 3). The values of the critical load parameter
k = pcrb

2/(π2D) are listed in Table 3. The exact analytical solution obtained for the classical formulation of the
buckling problem yields k = 4 [11]. The use of only two elements leads to a small error of 3.8%.

6.4. Bending of a Spherical Shell. We consider the problem of nonlinear deformation of a shell shaped like
a truncated hemisphere of radius R loaded by two inward and two outward radial forces P (Fig. 4). The following
data (dimensions of the quantities are not given) are used [10]: E = 6.825 · 107, ν = 0.3, R = 10, h = 0.04,
Pmax = 400, and α = 18◦ (α is the opening angle of the cutout at the shell pole). Owing to symmetry, a quarter of
the shell was modeled using an “isotropic” finite-element mesh (a 8 × 8 mesh of this type is shown in Fig. 4). The
radial displacements of the loaded points are listed in Table 4 versus the load. The displacements predicted by the
element proposed converge to somewhat lower values, as compared to those obtained in [10] on a 16 × 16 mesh of
rectangular four-node elements with six degrees of freedom per node (a maximum error of 2.3% in determining wB

is observed at the initial stage of loading).
6.5. Radial Compression of a Cylindrical Shell. We consider a circular cylindrical shell of radius R and

length L compressed by four radial forces P acting in the plane of the middle cross section of the shell (Fig. 5a).
We assume that each loaded node can move only in the radial direction. Thus, we impose eight constraints, which
exclude shell motion as a solid. The data of the problem are as follows: R = 0.1 m, L = 0.1 m, h = 0.001 m,
E = 2 · 1011 N/m2, and ν = 0. The nonlinear deformation of the shell under kinematic loading, i.e., under the
assumption of uniform displacements of all loaded nodes was studied in [6]. It was found that, for a certain load,
the shell can exhibit equilibrium configurations characterized by warped cross sections in addition to symmetric
four-lobe configurations.

It is of interest to refine the findings of [6] using the finite-element model proposed. In Fig. 5b, the solid
curves show the dependence of the loading parameter λ = PR2/(DL) on the deflection w at the loaded node of the
shell, which was obtained on an “isotropic” 12×72 mesh comprising 1728 elements and 936 nodes. For comparison,
the solution obtained on a 8 × 48 mesh comprising 768 elements and 432 nodes is also given (dashed curves).
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Fig. 4. Hemispherical shell loaded by four radial forces.

TABLE 4

Displacements of the Hemispherical Shell Loaded by Four Forces for Different Numbers of Finite Elements

P/Pmax Mesh wA wB

8 × 8 2.342 3.324

0.2
12 × 12 2.316 3.214
16 × 16 2.310 (2.321) 3.190 (3.261)
20 × 20 2.310 3.190

8 × 8 3.191 5.287

0.4
12 × 12 3.152 5.114
16 × 16 3.143 (3.158) 5.082 (5.196)
20 × 20 3.142 5.085

8 × 8 3.658 6.660

0.6
12 × 12 3.604 6.431
16 × 16 3.590 (3.598) 6.385 (6.497)
20 × 20 3.587 6.383

8 × 8 3.981 7.746

0.8
12 × 12 3.898 7.428
16 × 16 3.877 (3.875) 7.360 (7.448)
20 × 20 3.871 7.348

8 × 8 4.324 8.937

1.0
12 × 12 4.110 8.225
16 × 16 4.080 (4.067) 8.125 (8.178)
20 × 20 4.070 8.101

Note. The values in parentheses are obtained in [10].

Calculations show that, for the force-controlled loading, the basic deformation branch contains bifurcation points
B1, . . . , B4. It is worth noting that similar results were obtained for a narrow ring under the same loading conditions
using the finite-element model of a spatial rod [12]. An analysis of the bifurcation points and the corresponding
branches of equilibrium states requires much computational work and is out of the scope of the present study;
therefore, we confine ourselves to the branches considered in [6]. At the initial stage of deformation OB1, the
shell is stable. Upon attainment of the bifurcation point B1, buckling of the shell occurs, and the cross sections
become shaped like an oval. Provided the loaded nodes approach each other uniformly (kinematic loading), the
stable-deformation range extends up to the point B2 (λ = 10.251 and w = 0.118R), through which the branch
of asymmetric equilibrium configurations with warped cross sections passes. Figure 6 shows an example of these
configurations for state S (see Fig. 5b) characterized by λ = 18.147 and w = 0.495R.
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Fig. 5. Cylindrical shell loaded by four radial forces (a) and loading parameter versus deflection (b):
the solid and dashed curves refer to the 12 × 72 mesh and 8 × 48 mesh, respectively.

Fig. 6. Postcritical equilibrium configuration of the cylindrical shell compressed by four radial forces.

Conclusions. A new approach to constructing a finite-element model of nonlinear deformation of thin
shells, based on the Kirchhoff–Love hypotheses, is proposed. This approach takes into account finite curvature
changes within one element and is distinguished for simple formulations of the basic relations. Difficulties arising
in application of variation methods to a highly nonlinear system are overcome by using a three-level scheme for
calculating variations.
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The solution of the test problems shows that considerable improvement of the convergence rate with respect
to the number of finite elements has been achieved, as compared with [6]. In view of the fact that triangles are
universal elements for modeling surfaces of arbitrary geometry, it can be concluded that the finite element proposed
is an effective tool for analysis of nonlinear deformation and stability of thin elastic shells.
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